Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 171968, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588734

RESUMO

In the northern East African Rift System, the Republic of Djibouti relies exclusively on groundwater, with levels of fluoride (up to 14 mg/L) and nitrate (up to 256 mg/L) posing potential health risks. To address this, 362 samples were considered, including 133 shallow groundwater samples, along with new and previously published data dating back to 2012 on deep (88) and thermal (141) groundwater samples. To understand the enrichment mechanisms, dissolved anion and cation constituents, geochemical and thermodynamic tools, and stable isotope ratios, such as δ2H(H2O), δ18O(H2O), δ15N(NO3-), and δ18O(NO3-), were used. In particular, two activity diagrams (Mg2+ vs. Ca2+ and Na+ vs. Ca2+), focused on aqueous and solid fluoride species in an updated thermodynamic dataset of 15 fluoride-bearing minerals, are shown for the first time. The dataset offers new and valuable insights into fluoride geochemistry (classic thermodynamic datasets combined with geochemical codes rely solely on fluorapatite and fluorite F-bearing minerals). Activity diagrams and geochemical modeling indicate that mineral dissolution primarily drives groundwater fluoride enrichment in all water types, whereas the elevated nitrate levels may stem from organic fertilizers like animal manure, as indicated by nitrate isotopes and NO3-/Cl- vs Cl- diagrams. Despite the arid climate and 2H18O enrichment in shallow waters, evaporation seems to play a minor role. Monte Carlo simulations and sensitivity analysis were used to assess the health risks associated with elevated F- and NO3- concentrations. Mapping-related spatial distribution analysis identified regional contamination hotspots using a global Moran's I and GIS tools. One fluoride and three nitrate contamination hotspots were identified at a p-value of 0.05. Groundwater chemistry revealed that 88 % of groundwater being consumed exceeded the permissible levels for fluoride and nitrate, posing potential health risks, particularly for teenagers and children. This study pinpoints specific areas with excessive nitrate and fluoride contamination, highlighting a high non-carcinogenic risk.


Assuntos
Monitoramento Ambiental , Fluoretos , Água Subterrânea , Nitratos , Poluentes Químicos da Água , Fluoretos/análise , Nitratos/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Humanos , Medição de Risco
2.
Sci Total Environ ; 804: 150072, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509848

RESUMO

Within the East African Rift System (EARS), the complex Ali-Sabieh aquifers system, located in the south of the Republic of Djibouti, was overexploited and subjected to anthropogenic and/or geogenic pollution with high concentrations of dissolved nitrate (up to 181 mg/l) and sulfates (up to 1540 mg/l). This study is the first undertaken on the hydrochemistry of this aquifer system, combining geochemical tools and multi-isotope - δ2H(H2O), δ18O(H2O), δ18O(SO4), δ34S(SO4), δ15N(NO3), δ18O(NO3), δ13C(DIC), and 14C- was used to decipher the origin and fate of different nitrate and sulfate sources to groundwater. The groundwater samples of the region show a chemical evolution from fresh Ca(Na)-bicarbonate to brackish Na-Cl , mainly due to water-rock interaction. The combined chloride and water isotope data show that evaporation and transpiration are present, with the latter occurring primarily in the shallow alluvial aquifer waters. Inspection of δ15N(NO3) vs. δ18O(NO3) and NO3/Cl vs. Cl diagrams show that dissolved nitrates are primarily of anthropogenic origin. In particular, higher nitrate concentrations may be related to animal manure used as organic fertilizers during agricultural activities. Sulfates are from a natural origin related to the interaction of water with gypsum of hydrothermal or sedimentary origin. SO4/Cl ratio and isotopic composition show that dissolved sulfates in saline and ancient groundwater of the Cretaceous sandstone aquifer (between 7.4 ± 2.2 and 5.8 ± 1.4 k-years before the present) are generated by interaction with gypsum from oxidation of pre-existing (Jurassic?) sulfides. This work highlight that isotopic ratios of the two molecules -δ18O(SO4), δ34S(SO4), δ15N(NO3), δ18O(NO3)- are not sufficient for tracing the origin of nitrate and sulfates in groundwater, but that a complete hydrogeochemical study is needed. In the absence of this, the relatively high concentration of chloride and sulfates could be wrongly linked to the anthropogenic source of nitrate (manure or sewage).


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Animais , Djibuti , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Sulfatos , Poluentes Químicos da Água/análise
3.
Chemosphere ; 117: 256-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25108605

RESUMO

This work aims at decontaminating biologically treated domestic wastewater effluents from organic micropollutants by sulfate radical based (SO4(-)) homogeneous photo-Fenton involving peroxymonosulfate as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This oxidative system was evaluated by using several probe compounds belonging to pesticides (bifenthrin, mesotrione and clothianidin) and pharmaceuticals (diclofenac, sulfamethoxazole and carbamazepine) classes and its kinetic efficiency was compared to that to the well known UV-Vis/TiO2 heterogeneous photocatalysis. Except for carbamazepine, apparent kinetic rate constants were always 10 times higher in PMS/Fe(II)/UV-Vis than in TiO2/UV-Vis system and more than 70% of total organic carbon abatement was reached in less than one hour treatment. Hydroxyl radical (OH) and SO4(-) reactivity was investigated using mesotrione as a probe compound through by-products identification by liquid chromatography-high resolution-mass spectrometry and transformation pathways elucidation. In addition to two OH based transformation pathways, a specific SO4(-) transformation pathway which first involved degradation through one electron transfer oxidation processes followed by decarboxylation were probably responsible for mesotrione degradation kinetic improvement upon UV-Vis/PMS/Fe(II) system in comparison to UVVis/TiO2 system.


Assuntos
Peróxido de Hidrogênio/química , Ferro/química , Peróxidos/química , Fotólise , Titânio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Oxirredução , Praguicidas/química , Preparações Farmacêuticas/química , Sulfatos/química , Raios Ultravioleta
4.
Water Res ; 48: 229-36, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24095595

RESUMO

This work aimed at decontaminating biologically treated domestic wastewater effluent from pharmaceutical residues by using sulphate radical based homogeneous photo-Fenton involving persulphate (PS) as an oxidant, ferrous iron (Fe(II)) as a catalyst and simulated solar irradiation as a light source. This is the first time that the beneficiary use of solar energy in PS/Fe(II)/UV-Vis system was evaluated by using carbamazepine (CBZ) as a probe compound. In wastewater, CBZ was fully degraded in 30 min for an initial CBZ concentration of 50 µM and an optimal PS:Fe(II) molar ratio of 2:1 thanks to the high selectivity in reactivity of the sulphate radical limiting scavenging effects of organic matter and inorganic ions. Seventeen by-products were identified using liquid chromatography-high resolution-mass spectrometry allowing for the establishment of degradation pathways. CBZ first underwent degradation through one electron transfer oxidation processes due to sulphate radical reactivity followed by hydroxylation processes through hydroxyl radical formed by Fe(III) photoreduction. The sequential generation of sulphate radical and hydroxyl radical has made PS/Fe(II)/UV-Vis a kinetically effective process in removing CBZ from wastewater without the accumulation of toxic intermediates and opens new remediation strategies for tertiary treatment in domestic wastewater treatment plants.


Assuntos
Carbamazepina/isolamento & purificação , Processos Fotoquímicos , Sulfatos/química , Luz Solar , Águas Residuárias/química , Poluentes Químicos da Água/isolamento & purificação
5.
Water Sci Technol ; 67(6): 1362-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23508163

RESUMO

The purpose of this paper is to establish the feasibility of recovering discarded reverse osmosis (RO) membranes in order to reduce the salinity of domestic treated wastewater. This study shows that the reuse of RO membranes is of particular interest for arid countries having naturally high mineralized water such as Djibouti. The pilot desalination unit reduces the electrical conductivity, the turbidity and the total dissolved salt respectively at 75-85, 96.7 and 95.4%. The water produced with this desalination unit contains an average of 254 cfu/100 mL total coliforms and 87 cfu/100 mL fecal coliforms. This effluent meets the World Health Organization standards for treated wastewater reuse for agricultural purposes. The annual cost of the desalination unit was evaluated as US $/m(3) 0.82, indicating the relatively high cost of this process. Nevertheless, such processes are required to produce an effluent, with a high reuse potential.


Assuntos
Irrigação Agrícola , Conservação dos Recursos Naturais , Membranas Artificiais , Águas Residuárias , Djibuti , Salinidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...